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ABSTRACT—Cellular systems are becoming more heterogeneous with the introduction of low power nodes 

including femtocells, re- lays, and distributed antennas. Unfortunately, the resulting inter- ference environment 

is also becoming more complicated, making evaluation of different communication strategies challenging in 

both analysis and simulation. Leveraging recent applications of stochastic geometry to analyze cellular systems, 

this paper pro- poses to analyze downlink performance in a fixed-size cell, which is inscribed within a weighted 

Voronoi cell in a Poisson field of interferers. A nearest out-of-cell interferer, out-of-cell interferers outside a 

guard region, and cross-tier interferers are included in the interference calculations. Bounding the interference 

power as a function of distance from the cell center,  the total interference is characterized through its Laplace 

transform. An equivalent marked process is proposed for the out-of-cell interference under additional 

assumptions. To facilitate simplified calculations, the interference distribution is approximated using the 

Gamma distribution with second order moment matching. The Gamma approximation simplifies calculation of 

the success probability and average rate, incorporates small-scale and large-scale fading, and works with co-

tier and cross-tier interference. Simulations show that the proposed model provides a flexible way to 

characterize outage probability and rate as a function of the distance to the cell edge. 

Index Terms—Wireless communication, cellular networks, MIMO, stochastic geometry, interference. 

 

 

I. INTRODUCTION 
CELLULAR network deployment is taking on a massively heterogeneous character as a variety of 

infrastructure isbeing deployed including macro, pico, and femto base stations [1], as well as fixed relay stations 

[2] and distributed antennas [3]. A major challenge in deploying heterogeneous cellular net- works is managing 

interference. The problem is compounded by the observation that the deployment of much of the small cell 

infrastructure will be demand based and more irregular than tra- ditional infrastructure deployments [4]. Further, 

as urban areas are built out, even macro and micro base station infrastructure locations are becoming less like 

points on a hexagonal lattice and more random [5]. Consequently, the aggregate interference environment is 

more complicated to model, and evaluating the performance of communication techniques in the presence of 

heterogeneous interference is challenging. 

Stochastic geometry can be used to develop a mathematical framework for dealing with interference 

[6]–[9]. With sto- chastic geometry, interferer locations are distributed according to a point process, often the 

homogeneous Poisson Point Process (PPP) for its tractability. PPPs have been used to model co-channel 

interference from macro cellular base stations [5], [10]–[13], cross-tier interference from femtocells [4], [14], 

[15], co-channel interference in ad hoc networks [7]–[9], [16], and as a generic source of interference [17]–[19]. 

Modeling co-channel interference from other base stations as performed in [5], [10], [12], [13], [20] is a 

good starting point for developing insights into heterogeneous network interference. In [10] PPPs are used to 

model various components of a telecom- munications network including subscriber locations, base sta- tion 

locations, as well as network infrastructure leveraging re- sults on Voronoi tessellation. In [12], [20] a cellular 

system with PPP distribution of base stations, called a shotgun cellular system, is shown to lower bound a 

hexagonal cellular system in terms of certain performance metrics and to be a good approx- imation in the 

presence of shadow fading. In [5], a comprehen- sive analysis of a cellular system with a PPP is presented, where 

key system performance metrics like coverage probability and average rate are computed by averaging over all 

deployment scenarios and cell sizes. The approach in [5] is quite powerful, leading to closed form solutions for 

some special choices of pa- rameters. In [13] the outage and the handover probabilities in a PPP cellular network 

are derived for both random general slow fading and Rayleigh fading, where mobiles are attached to the base 

station that provides the best mean signal power. Recent work has considered extensions of [5], [12] to multi-

tier net- works. For example [21] extends [12] to provide some results on the signal-to-interference ratio in multi-
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tier networks while [22] extends [12] to provide remarkable simple expressions for the success probability in 

interference limited multi-tier networks. From our perspective, the main drawbacks of the approach in [5], [10], 

[12], [13], [20] for application to existing systems is that performance is characterized for an entire system not 

for  a given cell. As cellular networks are already built out, cellular providers will often want to know the 

performance they achieve in some given cells by adding additional infrastructure (and thus interference) in the rest 

of the network. It is also challenging to incorporate more complex kinds of heterogeneous infrastruc- ture like 

fixed relays or distributed antennas into the signal and interference models. 

Models for co-channel interference from PPPs in general wireless settings have been considered in prior 

work [16]–[19], [23]. References [17]–[19] derive models for the complex noise distribution. These models 

assume that the noise changes on a sample-by-sample basis and are suitable for deriving optimum signal 

processing algorithms, for example optimum detectors. Other work, see e.g., [16], [23] and the references 

therein, provide models for the noise  power  distribution. Most system-level analysis work [5], [10], [12], [13], 

[20] focuses on the noise power distribution.  They  assume  that the interference distribution conditioned on the 

noise power is Gaussian and thus characterize performance based on quantities like the signal-to-interference 

ratio or the signal-to-interfer- ence-plus-noise ratio, which are not appropriate for other noise distributions [17]–

[19]. This is reasonable because cellular systems tend to have structured transmissions in time and frequency, 

hence the interfering sets are likely to be constant over a coding block. Consequently, we focus on 

characterizing and employing the noise power distribution in our work. We assume the full spectrum is reused 

among all tiers of nodes; work on the spectrum sharing can be found in [42], [45]. 

In this paper we propose a simplified interference model  for heterogeneous networks called the hybrid 

approach. The key idea is to evaluate performance in a fixed-size circular cell considering co-channel 

interference outside a guard region and cross-tier interference from within the cell. Different sources of 

interference are modeled as marked Poisson point processes where the mark distribution includes a contribution 

from small-scale fading and large-scale fading. The fixed-size cell is inscribed inside the weighted Voronoi 

tessellation formed from the multiple sources of out-of-cell interference. The co-channel interference has two 

components: one that corresponds to the nearest interferer that is exactly twice the cell radius away (the 

boundary of the guard region), and one that corresponds to the other interferers (outside the guard region). An 

upper bound on the co-channel interference power distribution is characterized through its Laplace transform as 

a function of distance from the cell center for the case of downlink transmission, after lower bounding the size 

of the exclusion region. Performance is analyzed as a function of the ―relative‖ distance from the receiver to the 

center of the cell. With suitable choice of cell radius as a function of density, the resulting analysis (in the case of 

a single tier of interferers) is invariant to density, making the fixed-cell a ―typical‖ cell. 

One of the key advantages of the proposed model is that no explicit user association scheme needs to be 

specified. User as- sociation in heterogeneous cellular networks is an important topic of investigation and prior 

work has considered specific user assignment schemes [22], [24]–[26]. Two metrics, namely the received signal 

quality and the cell traffic load, are usually considered for selecting the serving base station. In the hybrid 

model, users can be arbitrarily distributed in the cell of interest without requiring any assumption on the user 

association. More- over, our new calculations still operate under the assumption that users connect to the closest 

base station. In the presence of shadowing, this may not be realistic, as closest base station as- sociation does not 

necessarily have a geometric interpretation. In practice, however, the association may be carried out in dif- 

ferent granularity as compared to the channel dynamics. For in- stance, users may connect to the base station that 

provides the highest averaged received power (often with biasing), thus the effect of fading and shadowing 

becomes constant and the users connect to the closest base station on average. 

To facilitate simplified calculations, we use approximations based on the Gamma distribution. We 

model the fading compo- nent using the Gamma distribution as this incorporates single user and multiple user 

signaling strategies with Rayleigh fading as special cases, along with an approximation of the composite small-

scale and log-normal fading distribution [43]. We then ap- proximate the interference distribution using the 

Gamma distri- bution with second order moment matching; the moments are finite because we use a nonsingular 

path-loss model. Using the Gamma approximation, we present simplified expressions for the success probability 

and the average rate, assuming that the system is interference limited, i.e., our calculations are based on the 

signal-to-interference ratio. Simulations show that the Gamma approximation provides a good fit over most of the 

cell, and facilitates lower complexity. 

Our mathematical approach follows that of [5] and leverages basic results on PPPs [8], [9], [23]. 

Compared with [5], we con- sider a fixed-size cell inscribed in a weighted Voronoi tessella- tion, and do not 

average over possible Voronoi cells. We also do not calculate system-wide performance measures, rather we 

focus on performance for a fixed cell of interest. We also demon- strate how to employ the proposed fixed cell 

analysis in a hetero- geneous network consisting of mixtures of the different kinds of infrastructure. The 

advantage of our approach is that more complex types of communication and network topologies can be 

analyzed in a given target cell and key insights on the perfor- mance of advanced transmission techniques with 
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heterogeneous interference using stochastic geometry can be obtained. Com- pared with our prior work reported 

in [28], in this paper we make the concept of the guard region more precise in the context of random cellular 

networks, avoiding the ad hoc calculation of the guard radius. As a byproduct, we also modified the calculations of 

the interference term to include a closest interferer that sits exactly at the edge of the guard region. In addition, we 

deal with more general fading distributions and use the Gamma approxi- mation to simplify the calculation of the 

success probability and the ergodic rate. A benefit of our new model is that with a par- ticular choice of the cell 

radius, the results are invariant with the base station density. Guard zones have been used in other work on 

interference models e.g., [19], [29]. In [29] they are used to evaluate the transmission capacity in contention-

based ad hoc networks not cellular networks while in [19] they are consid- ered in the derivation of the baseband 

noise distribution but not the noise power. 

 

II. MATHEMATICAL PRELIMINARIES 
In this paper we use of Gamma random variables to model the small-scale fading distribution, to approximate 

the product of the small-scale and log-normal fading distribution, and to ap- proximate the interference power. In 

this section, we summarize known results on Gamma random variables to make the paper more accessible. 

Definition 1: A Gamma random variable with finite shape and finite scale          , denoted as has 

probability 

distribution function 

 

 

for . The cumulative distribution function is 

 

where   is the lower incomplete gamma function. The first two moments and the variance 

are 

 

The scale terminology comes from the fact that if is then with scalar  is . 

The Gamma distribution is relevant for wireless communica- tion because it includes several channel models as a 

special case. For example if is a circularly symmetric complex Gaussian with (variance 1/2 per dimension) 

then is 

, which corresponds to Rayleigh channel assumption. If has a Chi-square distribution with degrees of 

freedom, used in the analysis of diversity systems, then is also  . If is Nakagami 

distributed [30] with parameters and then  has a distribution with  and 

 . 

 

 

 

 

 

 

 

 

 

 

Consequently the Gamma distribution can be used to represent common fading distributions. 

Of relevance for computing rates, the expected value of the log of a Gamma random variable has a simple form 

as summa- rized in the following Lemma. 

Lemma 2 (Expected Log of a Gamma Random Variable): If is then   where   is the 

digamma function. 

The digamma function is implemented in many numerical packages or for large its asymptotic approximation 

can be  used . 

The Gamma distribution is also known as the Pearson type III distribution, and is one of a family of 

distributions used to model the empirical distribution functions of certain data [31]. Based on the first four 

moments, the data can be associated with a preferred distribution. As opposed to optimizing over the choice of the 

distribution, we use the Gamma distribution exclu- sively because it facilitates calculations and analysis. We will 
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approximate a given distribution with a Gamma distribution by matching the first and second order moments in 

what is com- monly known as moment matching [32]. The two parameters of the Gamma distribution can be 

found by setting the appropriate moments equal and simplifying. We summarize the result in the following 

Lemma. 

Lemma 3 (Gamma 2nd Order Moment Match): Consider a distribution with                , and 

variance        .  Then the distribution with same first and second order moments has parameters 

  (1) 

Note that the shape parameter is scale invariant. For example, the Gamma approximation of would have shape 

 and scale . 

We will need to deal with sums of independent Gamma random variables with different parameters. There are 

various closed-form solutions for the resulting distribution [33], [34] (see also the references in the review article 

[35]). In this paper 

we choose the form in [33] as it gives a distribution that is a sum of scaled Gamma distributions. 

Theorem 4 (Exact Sum of Gamma Random Variables): Sup- pose that  are independent distributed 

random variables. Then the probability distribution function of 

  can be expressed as 

 

(2) 

 

where  , 

and is found by recursion from 

 

(3) 

 

and . 

Proof: See [33]. 

For practical implementation, the infinite sum is truncated; see [33] for bounds on the error. Mathematica code 

for com- puting the truncated distribution is found in [36]. In some cases, many terms need to be kept in the 

approximation to achieve an accurate result. Consequently we also pursue a moment-matched approximation of 

the sum distribution. 

Lemma 5 (Sum of Gammas 2nd Order Moment Match): Suppose that  are independent Gamma distributed 

random variables with parameters      and   . The Gamma distribution 

with the same first and second order moments has 

 

Bounds on the maximum error obtained through a moment approximation are known [32] and may be used to 

estimate  the maximum error in the cumulative distribution functions of the Gamma approximation. In related 

work [37] we show that the approximation outperforms the truncated expression in (2) unless a large number of 

terms are kept, and therefore con- clude that the approximation is reasonable. The approximation is exact in 

some cases, e.g., if all the shape values are identical (in this case  then  

and 

). 

In wireless systems, the zero-mean log-normal distribution is used to model large-scale fluctuations in the 

received signal 

power. The distribution is  where is the shadow standard deviation, often given in where 

. Typical values of are between 3 dB and 10 dB for example in 3GPP [38], [39]. 

Composite fading channels are composed of a contribution from both small-scale fading and large-scale fading. 

Consider the random variable for the product distribution where 

is and is log-normal with parameter . Related work has shown that the product distribution can be 

reasonably mod- eled using a Gamma distribution over a reasonable range of 

[43] by matching the first and second central moments. 

Lemma 6 (Gamma Approximation of Product Distribution): 

Consider the random variable where is a constant, 

is and is log-normal with variance . The Gamma 
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Fig. 1. Models for cellular communication. (a) Common fixed geometry model with hexagonal cells and 

multiple tiers of interference. (b) Stochastic geometric model where all base stations are distributed according to 

some 2D random process. (c) Proposed hybrid approach where there is a fixed cell of a fixed size surround by 

base stations distributed according to some 2D random process, with an exclusion region around the cell and a 

dominant interferer at the boundary of the guard region. 

 

random variable with with the same first-order and second-order moments has 

 

 

(4) 

 

(5) 

 

Because of its flexibility for modeling various kinds of small- scale fading, and composite small-scale large-

scale fading, we consider general Gamma distributed fading in this paper. 

 

III. DOWNLINK NETWORK MODEL 
In the classic model for cellular systems in Fig. 1(a), base sta- tions are located at the centers of hexagons 

in a hexagonal tes- sellation and interference is computed in a fixed cell from mul- tiple tiers of interferers. The 

hexagonal model requires simula- tion of multiple tiers of interferers and makes analysis difficult. In the 

stochastic geometry model for cellular systems illustrated in Fig. 1(b), base stations positions follow a PPP and 

cells are derived from the Voronoi tessellation. However, in this model, it is difficult to study the performance at 

specific locations, such as the cell edge, for cell sizes are random and performance met- rics are computed in an 

aggregate sense accounting for all base station distributions. 

Our proposed model, which we call the hybrid approach, is illustrated in Fig. 1(c). We consider a typical 

cell of fixed shape and size, nominally a ball with radius     which inscribes a Voronoi cell. A ball is assumed 

to simplify the analysis. The inscribing ball does miss some badly covered areas at the cell edge, thus it does not 

fully characterize performance in an en- tire Voronoi cell. The base station locations outside of the fixed cell are 

modeled according to a PPP and the interference be- comes a shot-noise process [40]. A guard region of radius 

 from the cell edge is imposed around the fixed cell in which no other transmitters can occupy. The role of the 

guard region is to guarantee that mobile users even at the edge of the typical cell receive the strongest signal 

power from the typical base station when neglecting channel fading, which also serves as the rule to 

systematically determine  . In the homogeneous network when the transmission power of all base stations is 

uniform,        . In the heterogeneous case, the expression of   is more complicated and is discussed in 

Section V. 

We also introduce the concept of the dominant interferer in the hybrid model, which can be better 

explained with one ob- servation from the stochastic model. Intuitively, we can regard the fixed cell in the 

hybrid approach as the inscribing ball of a Voronoi cell in the stochastic geometry model, though the size of the 

inscribing ball is random in the latter case. In Fig. 1(b), the size of the equivalent guard region is determined by the 

nearest neighboring base station, i.e., the dominant interferer locating at its outer boundary. In short, in the 

stochastic geometry model there always exists a dominant interferer locating at the outer boundary of the guard 

region. Hence, in our proposed hybrid model, besides the PPP interferers outside the guard region, we also 

assume one dominant interferer uniformly distributed at the edge of the guard region in the homogeneous 

network. In addi- tion, given , the location of the dominant interferer is inde- pendent of those of all other base 

stations. This idea is extended to the heterogeneous case in Section V. 

The choice of     depends on the exact application of the model. It could simply be fixed if it is 

desired to analyze the performance of a particular cell in a deployment. Alternatively, if it is desired to analyze a 

―typical‖ fixed cell, the radius could be chosen to be a function of the density. For example, if the cell radius 

corresponds to that of an equivalent PPP model of base  stations  with  density  , then  . Then the  cell 

radius shrinks as the network becomes more dense. Selecting 
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the radius for the heterogeneous case is a bit more complex and is discussed in Section V. 

Performance is evaluated within the fixed cell accounting for interference sources outside the guard region 

(including the dominant interferer at the edge). To make the calculations con- crete, in this paper we focus on the 

downlink. We consider the received signal power at distance     from the transmitter 

presumably located at the cell center. Thanks to the isotropic property of the circular cell, without loss of gener- 

ality, we fix the receiver location at   in the following dis- cussion. Extension to distributed antennas, e.g., 

requires a more complex signal model. Let the received signal power be 

 

where                  is the distant-dependent average re- ceived signal power with     being the transmit 

power, a random variable corresponding to the large-scale fading power usually log-normal, and   is a random 

variable corresponding to the small-scale fading power. We assume that a non-singular path-loss model is used 

with 

                            (6) 

where is the path-loss exponent,  is the reference distance, and  is a constant. In addition to 

resulting in finite interference moments, (6) takes into account the realistic RF design constraints on the 

maximum received power and is often assumed in a standards based channel model like 3GPP LTE Advanced 

[38]. 

We consider the power due to small-scale fading as occurring after processing at the receiver, e.g., diversity 

combining. Fur- thermore, we assume that the transmit strategy is independent of the strategies in the interfering 

cells and no adaptive power 

 

 

control is employed. We model the small-scale fading power as a Gamma distributed random variable with

     . The Gamma distribution allows us to model several different 

trans- mission techniques. For example, in conventional Rayleigh fading is while Rayleigh fading 

with   receive an- tennas and maximum ratio combining is   

  . Maximum ratio transmission with Rayleigh fading,   transmit antennas, and  

        receive antennas would have   is     . 

With multiuser  MIMO  (MU MIMO) with  transmit antennas, active users, and zero-forcing  

precoding then is 

where the   follows from splitting the power among different users. 

We model the large-scale fading contribution as log-normal distributed with parameter . The large-scale fading 

accounts for effects of shadowing due to large objects in the environment and essentially accounts for error in the 

fit of the log-distance path-loss model. Because of the difficulty in dealing with com- posite distributions, we 

approximate the  random  variable with another Gamma random variable with the same first and second order 

moments as described in Lemma 6 with distribu- tion where   is found in (4) and  in (5). Note that from the 

scaling properties of Gamma random variables, with this approximation, the received signal power   is 

equiva- lently  . 

 

IV. HOMOGENEOUS NETWORK INTERFERENCE 
In this section, we develop a model for homogeneous net- work interference, i.e., interference comes from a 

single kind of interferer such as a macrocell. We model the interferer lo- cations according to a marked point 

process, where the marks correspond to the channel between the interferers and the target receiver. Specifically 

we consider a PPP with density and marks modeled according to the signal power distribution. For interferer  

 follows a log-normal distribution with while the small-scale fading distribution      is . The transmit 

power of the interferer is denoted by . The transmit power is fixed for all interferers and the actions of each 

interferer are in- dependent of the other interferers. Note that the parameters of the interference mark distribution 

are usually different than the signal channel even when the same transmission scheme is em- ployed in all cells. 

For example, with single antenna transmis- sion and conventional Rayleigh fading  is  for any  at 

the receiver, while with multiuser MIMO zero-forcing beam- forming with multiple transmit antennas serving 

 users  is . 

We aim at computing the interference power received at  as illustrated in Fig. 2. In the homogeneous 

network, as men- tioned in the previous section,  . 

The interference    comes from two independent parts:   is 

the interference from the dominant interferer at the guard region edge and   is the interference from all other base 

stations which form a PPP outside the guard region, i.e., 
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Using the law of cosines,  can be computed as 

 
 

 

 
 

Fig. 2. Interference power calculation at a point away from the transmitter.  An upper bound is considered as the 

interference is not excluded uniformly around the receiver. 

 

 

where is a uniform random 

variable on , and . 

To compute , unfortunately, the exclusion distance to the nearest interferer is asymmetric, since the distance to the 

closest edge of the circle is  while the distance to the fur- thest edge is  . The asymmetric 

property renders the exact solution generally difficult to obtain except for the special case when . To avoid the 

dependence on the location of the interference field we pursue an upper bound on the interfer- ence power, as 

illustrated Fig. 2. Specifically, we consider the interference contribution in a ball of radius  around the 

received signal denoted  . This result is an upper bound on the aggregate interference due to the fact 

that less area is excluded from the calculation. Then the receiver is at the center of the reduced interference 

region, which we call the ―small ball‖ approximation. Under this assumption we write the received power as 

 

  (7) 

 

We use the same non-singular path-loss model in (6) for the transmit signal power. Other non-singular models 

and tradeoffs between different models are discussed in [8], [23]. As long  as there is a guard region with                     

a singular path-loss model could be employed without changing the results. In our calculations we assume that 

 to simplify the exposition. To simplify computation in general cases, we also apply the small 

ball approximation to  to obtain 

                          (8) 

with some abuse of notation. 
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(9) 

 

We will characterize the distribution of the random variable   in terms of its Laplace transform, along the 

lines of [5]. When the interference marks  follow an arbitrary but iden- tical distribution for all the Laplace 

transform is given by 

 

 

The  first  term, , can be directly computed 

 

through  integral  given  the  distribution  of    and   . The second term,               , can be computed 

as 

 

where     follows from the i.i.d. distribution of  and its further independence from the point 

process follows as- suming that  and using the probability gen- erating functional of the PPP 

[6], , and 

 

In some cases the expectation can be further eval- 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Interference in a heterogeneous network from multiple kinds of infra- structure. (a) Heterogeneous out-

of-cell interference. (b) Homogeneous inter- ference and cross-tier interference from low power nodes. 

 

this case is that there is interference within the cell; effectively the interference contribution is a constant since it 

uated, e.g., when then 

where is the Beta Euler function 

and is the Gauss hypergeometric function. 
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is spatially invariant. There may still be a guard radius in this case but it  is likely to be small. 

 

A. Heterogeneous Out-of-Cell Interference 

Suppose that there are different kinds of infrastructure de- ployed in a homogeneous way through 

the network. A more complex model would take non-uniformity or clustering into ac- count [44], but this is 

beyond the scope of this work. Each inter- ference source can be modeled as a marked PPP with marks cor- 

responding to the composite fading distribution distributed as where  . The path-loss function is 

the 

same for each process. The transmitting power is given by  and the transmitter density by    . Consequently, 

each process is parameterized by . 

Since the transmission power of each tier is different, the guard region radius for each tier  is different. We 

assume that the base station associated with the fixed cell belongs to tier 

1. Given , the radius of the guard region for tier  , denoted as , is 

 

 

V. HETEROGENEOUS NETWORK INTERFERENCE 
In this section we extend the proposed interference model to the case of a heterogeneous network, 

where the macrocellular network is complemented with other kinds of infrastructure including low-power nodes 

like small-cells, femtocells, fixed relays, and distributed antennas. We consider two different interference 

scenarios as illustrated in Fig. 3. The scenario in Fig. 3(a) corresponds to multiple kinds of out-of-cell inter- 

ference. For example, there might be interference from both high power base stations and low power distributed 

antenna system transmission points. Since the transmission power of different tiers is heterogeneous, the guard 

regions associated with different processes may be different. Moreover, the key concepts of the hybrid model, 

such as the guard region and  the dominant interferer are also extended to this case. The scenario in Fig. 3(b) 

corresponds to cross-tier interference from a second tier of low-power nodes, e.g., small-cells or femtocells or 

uncoordinated transmission points. The main difference in 

                           (10) 

 

where  . It can be shown that this configuration guarantees that the edge of fixed cell is always 

covered by its 

associated base station, neglecting channel fading. Each tier of transmitters forms a homogeneous PPP of 

density   outside the guard region. 

To analyze the performance of a ―typical‖ cell, we now let  be proportional to the average radius of the inscribing 

ball of the typical Voronoi cell in the equivalent stochastic geometry model as we did in the homogeneous case. In 

that way, the analysis is invariant with the scaling of the base station densities. Given  and  , the average 

radius of the inscribing ball of the typical Voronoi cell can be computed as 

 

(11) 
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We denote , and let 

in the following part. 

We also extend the concept of the dominant interferer to the heterogeneous model. This case becomes more 

complex than the homogeneous case: the dominant interferer belongs to tier and locates at the edge of tier ’s 

guard region with probability  . 

In the -tier network, the total interference is made up of 

:   from the dominant interferer;                  from the base stations outside the guard region of tier , 

which is shot-field noise. Furthermore,                   are inde- pendent. The equation for the total 

interference under the small ball approximation is given by 

 

From the independence of the PPPs, the Laplace transform of the heterogeneous out-of-cell interference is 

 

with   the Laplace transform of . 

By (9), it is easy to find that the Laplace transform of      is given by 

 

 

B. Cross-Tier Interference 

Certain kinds of infrastructure, like femtocells, are not associ- ated with the macro base station. Rather they form 

another tier of nodes and create cross-tier interference. We propose to use the same stochastic geometry 

framework to model the interference with a main difference in how the notion of guard zone is de- fined. Let 

 denote an exclusion region around the desired receiver with radius  . This region might be quite 

small, just a few meters radius, and is designed to avoid the case where the low-power node is co-located with the 

target receiver. Let us suppose that the cross-tier interference is associated with a PPP given by , the 

transmitting power is given by , and the transmitter density by . The received interference power is 

given by 

 

which does not depend on due to the shift invariance prop- erty of the PPP. Consequently cross-tier interference 

creates a constant interference that is independent of the mobile receiver location. 

 

VI. APPROXIMATING THE INTERFERENCE DISTRIBUTION USING THE GAMMA 

DISTRIBUTION 
The expressions in Section IV and V provide a characteriza- tion of the distribution of the interference terms in 

the proposed hybrid approach. Unfortunately, the distributions are character- ized in terms of the Laplace 

transform and further simplifica- tions exist only for special choices of the parameters and mark distribution. 

Consequently, in this section, we pursue an approx- imation of the distribution of the interference using the 

Gamma distribution. First we review the calculations for the Gamma ap- proximation of the interference terms 

with a single and multiple interferers. Then we use these calculations to parameterize the Gamma approximation 

of the interference. 

 

 

A. Moments of the Interference Process 

The moments for interference distribution can be computed along the lines of ([8], Equations 2.19 and 2.21). We 

only need the first two moments for the Gamma approximation. Let  denote the random variable 

corresponding to the mark distribution for the case of a homogeneous interference source. 

For general cases, we use the approximation expression as in 

(7) and (8) to derive the following proposition. 

Proposition 7 (Moments of Homogeneous Interference): The mean and variance of the interference in the case of  
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homoge- neous interference are 

 

 

 

 

 

 

In the case of heterogeneous interference, we propose to use the moments of the sum to approximate using the 

equivalent mark distribution. We summarize the key results in the fol- lowing proposition. 

Proposition 8 (Moments of Heterogeneous Interference): The mean and variance of the interference in the case 

of het- erogeneous interference are 

 

 

 

 

 

 

 

 

 

 

 

 

 

where . 

When , we can calculate the moments of the interfer- ence in closed form without the small ball 

approximation. 

 

Proposition 9 (Closed Form of Moments No Small Ball): When , the exact moments of heterogeneous 

interference can be computed through 
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Lastly, an additional term could be included accounting for the cross-tier interference  in a 

straightforward way. Fur- ther modifications are possible. For example, having different numbers of active users 

in an interfering cell with multiuser MIMO could be included by having a sum of marked point pro- cesses each 

with a different fading distribution corresponding to different choices of active users. Note that we can incorpo- 

rate cross-tier interference  into Proposition 8 by replacing  with   and selecting the other 

parameters as appropriate. 

 

B. Gamma Approximation of the Interference 

While the Laplace transform of the interference power com- pletely characterizes the distribution, it is often 

challenging to provide simple or closed-form solutions for a variety of sce- narios of interest. Consequently, we 

pursue an approximation of the interference term that will yield simpler expressions targeted at the proposed 

hybrid setting using the Gamma distribution. 

Proposition 10 (Gamma Approximation of Interference): The random variable with the same mean and variance 

as has 

 

  (12) 

 

 

VII. CHARACTERIZATION OF THE RANDOM SIR 
In this section we characterize the system performance as a function of the random quantity the signal to 

interference ratio (SIR) given by 

 

The SIR is a useful quantification for performance analysis    in cellular systems because performance 

at the cell edge is usually interference limited; we consider additive noise and signal to interference plus noise 

ratio (SINR) in the simulations. Because simplified expressions including the exact distribution calculated in 

Sections IV–V are only available in special cases, we use the Gamma approximation described in Section VI. 

Tomake the results concrete, we assume that                  where  . Note that in the distant-dependent path-loss 

and transmit power are absorbed into the     term for ease of presentation. 

We  use the   to evaluate two metrics of performance: the success probability defined as         

where is some threshold and the ergodic achievable rate given by 

 

The success probability is one minus the outage probability and gives a measure of diversity performance and 

severity of the fading. The achievable rate gives the average rate that can be achieved at assuming that the 

interference is Gaussian. 

 

 

 

A. Success Probability 

We first provide the success probability without proceeding to a Gamma approximation for the out-of-cell 

interference and signal distribution given by         where                 . Using the results from [41], the 

success probability at location 

 

 

(13) 

 

 

 

 

 

where in the case of heterogeneous interference,  is given by (9). In the special case of         the success 

probability can be simplified as 

 

             (14) 

 

is given by 
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Evidently, the closed-form expression (13) is involved and no useful insight can be obtained. This motivates the 

use of Gamma approximation for the aggregate interference as a means to pro- vide simpler and useful 

expressions. 

We evaluate below the success probability for the case of Gamma distributed interference, effectively                                     

. In the case of homogeneous interference, the expression for and   is found (12). In the case of heterogeneous 

interference, the expressions for  and   are given by (12), replacing  by . The result is summarized in 

the following proposition. 

Proposition 11 (Success Prob. for Gamma Interference): The success probability when the signal distribution is 

where and the interference distribution is   where  is given by 

 

where   is a regularized hypergeometric function. 

Proof:  First  we  rewrite  the  probability   to   separate the signal and interference terms as          

 . Now conditioning on the interference and eval- uating the expectation 

 

 

 

 

 

 

where is the cumulative distribution function of  and 

 

[46], [47] while for larger values of the asymptotic expres- 

the second equality follows from evaluating the expectation. 

We can obtain a more exact expression in the case where each interferer is separately assumed to have a Gamma 

distribution. 

Proposition 12 (Heterogeneous Success Probability): The success probability when the signal distribution is 

where and the interference distribution is where                  for 

is given by 

 

where the parameters  are found via Theorem 4. 

Proof: First we rewrite the probability to separate the signal and interference terms, and then conditioning on the 

interference, we evaluate the expectation, i.e., 

 

 
From the results of Theorem 4, the distribution of  can be expressed as 

sion can be employed [48]. Depending on which numerical package is employed, it may be faster to compute the 

SIR using Monte Carlo techniques based on and . 

 

B. Average Rate 

The average rate is useful for computing average rates at the cell edge and the area spectral efficiency, where the 

average rate at is integrated over the radius of the cell. Our calcula- tions are be based on the observation that 

. From Lemma 2, has a com- 

putable solution but requires dealing with a sum of Gamma random variables. To solve this problem, we 

can use the result in (2) to find an expression for the expected log of the sum of Gamma random variables. The 
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resulting expression is summarized in the following proposition. 

Proposition 13:  Suppose that    are independent distributed random variables. Then 

 

Proof: See ([37], Proposition 5). 

Using this result, the average rate with homogeneous inter- ference follows. 

Proposition 14 (Homogeneous Average Rate): The average rate with homogeneous interference in the absence 

of noise is 

 
 

 

 
 

 
  

is found by recursion from 

 

 

 

 

 

 

 

 
 

 

where 

 

(3). 

 

       
,  and is  found  by  recursion   in 

where 

, and 
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with . Now recognize 

that (2) is essentially a mixture of random vari- ables with weights . Now we can use the results of (11) to 

establish that 

 

 

 

 

 

 

 

Proof: Follows from the application of Proposition 13 to the case of the sum of two Gamma random variables 

and , and using the result in Lemma 2. 

The average rate with heterogeneous interference can be computed along the same lines as Proposition 14. 

Proposition 15 (Heterogeneous Average Rate): The average rate with homogeneous interference in the absence 

of noise is 

 

 

 

 

 

 

 

 

 

While the result in Proposition 12 is more exact, it requires truncating the infinite series. In related work [37] we 

found that in most cases the approximation outperforms the truncated ex- pression in (2) unless a large number 

of terms are kept, and therefore find Proposition 11 is sufficient. 

The  regularized hypergeometric function is 

 

where 

 

 

 

recursions like in (3). 

 

 

 

, and and are found by 

 

available in many numerical packages or can be computed from unregularized hypergeometric function by 

recognizing that  
     

. For small values of       it is 

convenient to compute it using the truncated series definition 

 

Proof: The first pair of terms result from application of Proposition 13 to the term 

, 

while the second term results from application of Proposition 13 to the term  . 
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If the number of terms is too large for practical computation, an alternative is to approximate the sum of the 

signal plus in- terference term as another Gamma random variable using the moment matching approach. 

Proposition 16 (Homogeneous Average Rate—Gamma): The average achievable rate without noise with 

homogeneous inter- ference is approximately 

 

 
Proof:  To find  we apply Lemma 5 and ap- proximate the sum of Gamma random variables with 

another Gamma distribution with the same mean and variance. Note that 

 

Then a Gamma random variable with the same mean and variance has 

 

 
  

Now we can approximate the term 

 

where the last part follows from Lemma 2. 

The result can be extended to the case of heterogeneous inter- ference by modifying the computation of the mean 

and variance terms. 

 

VIII. SIMULATIONS 
In this section we consider a system model of the form in Fig. 2 with a single antenna base station and a Poisson 

field    of base station interferers. The density of interferers  equals  transmitters per . We  evaluate  

performance  in  a fixed cell of radius                         m which is the radius of the typical cell to make an 

equivalent comparison with the sto- chastic geometry model. In the homogeneous case, the radius of the guard 

region  is 300 m. The macro base station has 40W transmit power and Rayleigh fading is assumed. The path-

loss model of (6) is used with          m, and . Log-normal shadowing is assumed with 6 dB 

variance. Monte Carlo simulations are performed by simulating base station locations over a square of 

dimension . The mutual information and the outage probability are estimated from their sample 

averages over 200 small scale fading realizations, and 500 different interferer positions. Performance is 

evaluated as  a function of , the distance from the center of the fixed cell. 

First, we validate two of the key concepts used in the pro- posed model in this paper: the use of guard region and 

of the dominant interferer. In Fig. 4 we compare the performance be- tween the proposed hybrid approach and a 

PPP layout of base stations as in the stochastic geometry model. Our proposed hy- brid approach matches the 

stochastic geometry model well at 

 

 
Fig. 4.   Coverage probability as a function of  the distance from the cell center. Our proposed hybrid 

model matches the stochastic geometry model where base stations are distributed as a PPP. Further, we show that 

the dominant interferer is essential; without a dominant interferer, the error becomes large. 
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all locations in terms of SIR distribution. Without including the dominant interferer at the cell edge, 

however, the result is too optimistic. 

Now we consider the Gamma approximation for the inter- ference field. We claim that the Gamma 

distribution is a good approximation of the distribution strength of the interference power. Also, we show that 

the approximation that the inter- ference power for a user at radius  from the cell center is  upper bounded by 

considering interferers outside a ball of ra- dius   provides a relatively tight bound in terms of SIR 

distribution. 

Now we compare the Gamma approximation in terms of the average rate and the success probability in 

a case with hetero- geneous interference. We consider a setup with a single antenna base station and three sources 

of interference. One source of interference is from other base stations, which has power and density as we 

already described. The second source of inter- ference is a multiuser MIMO distributed antenna system (DAS) 

with four single antenna transmission points, a single active user per cell. Each DAS antenna has 20 W 

transmission power. The DAS system is also modeled using a PPP but with density  . The distributions of the 

effective channels are derived from [37]. Note that essentially we assume that every cell also has a DAS system; 

in reality some cells would have DAS and some would not, which can be taken into account by modifying the 

density. The third source of interference is from cross-tier interference from a single tier of femtocells. The 

femto interferers have 20 dBm transmit power and a guard region of 5 m. Since this is cross-tier interference, 

the femtocells may be deployed in the cell and thus they create a constant level of interference power 

corresponding to a minimum distance of 5 m. An indoor-out- door penetration loss of 10 dB is assumed. 

An important point is that, compared with the homogeneous case, the size (effective coverage area) of 

the fixed cell shrinks in the heterogeneous networks due to the increase of the overall in- terferer density. The 

reason is that we calculate the radius of the 
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Fig. 5.  Coverage probability for a receiver at a distance   from the center. The curves show that Gamma 

distribution is a good approximation of the inter- ference power. Moreover, the approximation to avoid 

asymmetric receiver lo- cations provides a relatively tight bound in terms of coverage probability. The error 

becomes more significant at the cell edge when for high SIR, which is not a huge problem since the 

likelihood of large SIR at the cell edge is small. 

Fig. 6. Comparison of the ergodic rates with and without the Gamma approxi- mation with a tier of low-power 

femto nodes that create cross-tier interference. In the heterogeneous case,   is 143.20 meters, which is smaller 

than in the homogeneous case. We see that the Gamma approximation provides low error except towards the cell 

edge for the case. Cross-tier interference provides a con- stant offset of the entire curve of no cross-tier 

interference case. Thanks to the 10 dB indoor-outdoor penetration loss, the offset is relatively small. The offset, 

notably, in both Gamma approximation and simulations is consistent, meaning it is still possible to make 

relative comparisons between the Gamma approxi- mation curves. 

 

 

heterogeneous cell and the size of the guard region for each tier from (10) and (11). Consequently, the coverage 

area is smaller when the network is more dense, as expected from intuition. 

The results of the comparison are displayed in Fig. 6 for av- erage capacity and in Fig. 7 for outage. In 

terms of average rate, the main conclusion is that the Gamma approximation provides good performance for both 

homogeneous and heterogeneous in- terference. There is more significant error at the cell edge in both cases. In 

terms of success probability, similar results are 

 

 

 

 

Fig. 7. Comparison of the success probability between the Gamma approxi- mation and Monte Carlo 

simulations for a target SIR of 5 dB. We see that the Gamma approximation overall provides reasonable 

performance with a slight error at the cell edge. 

 

 

observed. The fit with both homogeneous and heterogeneous interference is good, except for locations 

at the cell edge. While there is approximation error, we still believe that the fit is good enough to justify the 

viability of the Gamma distribution. 

 

IX. CONCLUSION 
In this paper, we proposed a hybrid model for determining the impact of interference in cellular systems. 

The key idea was to develop a model for the composite interference distribution out- side a fixed cell, as a 

function of the user position from the cell center. From a numerical perspective, our approach simplifies the 

simulation study of cellular systems by replacing the sum in- terference term with an equivalent interference 

random variable. Then, functions like average rate and success probability can be computed through numerical 

integration rather than Monte Carlo simulation. Unfortunately, the numerical integrals may still require a fair 

amount of computational power to compute. Consequently, we proposed to approximate the interference dis- 
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tribution by moment matching with the Gamma distribution. We showed how the Gamma distribution could be 

used to obtain relatively simple expressions for the success probability and er- godic rate, which simplify further 

when the sum interference power is approximated directly as a Gamma random variable. Simulations showed 

that with the introduction of guard region and a dominant interferer, a reasonable fit between the stochastic 

geometry model and the proposed model was achieved, with a small error at the cell edge when the Gamma 

approximation was employed. Future work is needed to better characterize the ap- proximations, e.g., by 

developing expressions for bounding the error terms, and also incorporating more complex propagation models 

like those proposed in [49]. 
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